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Dependence of antiproton yield 
into ±2.25% momentum spread 

on the beta-function at the 
target for the beam acceptances 

of 15, 20, 25, 30 and 35 mm 
mrad, and target lengths from 5 
to 12 cm. Waist positions have 
been optimized and their values 

are shown in Figure 3.4. The 
proton beam energy is 120 

GeV, and the rms beam size at 
the target is 100 µm.  The 

kinetic energy of antiprotons is 
8 GeV.

0 1 2 3 4 5
0

1 .10
5

2 .10
5

3 .10
5

4 .10
5

5 .10
5

Beta-function [cm]

A
nt

ip
ro

to
n 

yi
el

d
Ltarg 5= cm

0 1 2 3 4 5
0

1 .10
5

2 .10
5

3 .10
5

4 .10
5

5 .10
5

Beta-function [cm]

A
nt

ip
ro

to
n 

yi
el

d

Ltarg 6= cm

 

0 1 2 3 4 5
0

1 .10
5

2 .10
5

3 .10
5

4 .10
5

5 .10
5

Beta-function [cm]

A
nt

ip
ro

to
n 

yi
el

d

Ltarg 7= cm

0 1 2 3 4 5
0

1 .10
5

2 .10
5

3 .10
5

4 .10
5

5 .10
5

Beta-function [cm]

A
nt

ip
ro

to
n 

yi
el

d

Ltarg 8= cm

 

0 1 2 3 4 5
0

1 .10
5

2 .10
5

3 .10
5

4 .10
5

5 .10
5

Beta-function [cm]

A
nt

ip
ro

to
n 

yi
el

d

Ltarg 10= cm

0 1 2 3 4 5
0

1 .10
5

2 .10
5

3 .10
5

4 .10
5

5 .10
5

Beta-function [cm]

A
nt

ip
ro

to
n 

yi
el

d

Ltarg 12= cm

 
 

0 5 10
0

0.5

1

1.5

2

2.5

Target length [cm]

O
pt

im
al

 b
et

a-
fu

nc
ti

on
 [

cm
]

 

 Dependence of the optimal beta-function 
on the target length 



 3

Passage through lithium lens 

1. Nuclear absorption 82.0exp ≈
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3. Non-linearity
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Antiproton yield as function of lens gradient for different target lengths and radii 
 

L=15 cm 

0 50 100 150 200 250
0

1 .10
5

2 .10
5

3 .10
5

4 .10
5

G [kG/cm]

A
nt

ip
ro

to
n 

yi
el

d

75 40 mm mrad

30 mm mrad

20 mm mrad

15 mm mrad

10 mm mrad

0 50 100 150
0

1 .10
5

2 .10
5

3 .10
5

4 .10
5

5 .10
5

G [kG/cm]
A

nt
ip

ro
to

n 
yi

el
d

75 40 mm mrad

30 mm mrad

20 mm mrad

15 mm mrad

10 mm mrad

0 50 100 150
0

1 .10
5

2 .10
5

3 .10
5

4 .10
5

5 .10
5

G [kG/cm]

A
nt

ip
ro

to
n 

yi
el

d

75 40 mm mrad

30 mm mrad

20 mm mrad

15 mm mrad

10 mm mrad

 
R=0.66 cm          R=1 cm      R=1.5 cm 

0 50 100 150 200 250
0

1 .10
5

2 .10
5

3 .10
5

4 .10
5

G [kG/cm]

A
nt

ip
ro

to
n 

yi
el

d

75 40 mm mrad

30 mm mrad

20 mm mrad

15 mm mrad

10 mm mrad

0 50 100 150
0

1 .10
5

2 .10
5

3 .10
5

4 .10
5

G [kG/cm]

A
nt

ip
ro

to
n 

yi
el

d

75 40 mm mrad

30 mm mrad

20 mm mrad

15 mm mrad

10 mm mrad

 
0 50 100 150

0

1 .10
5

2 .10
5

3 .10
5

4 .10
5

G [kG/cm]

A
nt

ip
ro

to
n 

yi
el

d

75 40 mm mrad

30 mm mrad

20 mm mrad

15 mm mrad

10 mm mrad

 
L=18 cm 



 5

Antiproton yield as function of lens current and phase 
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Where we presently lose and how much? 
Total loss  

for��
H mm mrad�

���Can gain 
back for��

H mm mrad�

 

20 40 20 40 
Lack of focusing strength 10% 20% 0*? 8%*? 
Proton beam size 10% 5% 7 3 
Absorption in the lens** 18% 18% - - 
Multiple scattering in the lens 10% 3%   
Lithium lens non-linearity 0 0 0 0 
* - length lengthening by 3 cm 
** - 1% per 1 cm of lithium 
 

Lens pulse of 360 �s looks well optimized 
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1. Power deposition at the target prevents achieving a smaller beam size (currently ~180 µm) !!! 
2. Slip stacking requires swiping on the target (r=0.3 mm has to be sufficient for σ=100 µm and 1013 

protons)  
 
 

0 0.1 0.2 0.3 0.4 0.5 0.6
0.5

0.6

0.7

0.8

0.9

1

rms size of proton beam [mm]

R
el

at
iv

e 
yi

el
d

Proton beam size effect 

0 10 20 30 40 50
0

0.5

1

Acceptance [mm mrad]

L
os

s 
fa

ct
or

Multiple scattering effect 



 7

Optics issues for AP1 line  
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1. Smaller beam size on the target less power deposited in the target window 
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2. Aperture limitations can be a problem if we will go to 130 µm beam size (~ 1 km 

horizontal beta-function) 
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Optics issues for AP2 line  
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1. Choise of the optimum lens radius 

a. We have sufficiently large aperture in the first triplet and we are OK with 1 cm 
lens 

b. Lens of larger size will bring increased effect of multiple scattering and is not 
expected to be better 

c. Smaller lens is not compatible with 40 mm mrad acceptance  
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Debuncher aperture 
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Where are we, and where were we? 
1. Debuncher and AP2 line apertures are the most probable 

reasons of today’s low performance. 
2. Discrepancy between predictions and observations can 

be related to 
a. Not very well optimized optics or steering in the 

course of measurements  
b. Incorrect calibration of lens gradient due to 

incorrect current measurements or incorrect 
calculations of current distribution in the lens 
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The plan of improvements 
1. Lens (10 – 15% increase of the yield is expected) 

a. Stay with the same radius 
b. If we will not figure out how we could reliably increase the lens current (20 to 40% are 

desirable) we have to increase its length by 20-25%. 
c. Can we achieve the required repetition time of 1.5 s with the solid lens 

2. Beam swiping on the target (5 – 7% increase of the yield and possibility to double the proton 
beam intensity is expected). 

a. Clearing apertures in AP1 line because it implies a smaller beam on the target and larger 
beam in the triplet 

b. Optimization of coil positions 
c. Fixing hardware 

3. Opening apertures, fixing optics and steering in AP2 and Debuncher with the aim to achieve 
35-40 mm mrad acceptance should bring the antiproton yield to 30-40·10-6 (1.5-2 times better 
than the historical best) 

  
Questions to answer 
1. What needs to be modified in the target station? Should it be just the lithium lens or something else? 
2. Do we see any necessity to use the liquid lithium lens for Run IIb? 
3. If we modify the solid lens what needs to be changed? - the radius, the length, the current pulse or 

something else. 
4. Why current lens breaks? How it could be modified to avoid this? 

5. Do we need any additional instrumentation for target station? 


